数据结构作业——天梯地图

天梯地图
时间限制: 300 ms
内存限制: 64 MB

本题要求你实现一个天梯赛专属在线地图,队员输入自己学校所在地和赛场地点后,该地图应该推荐两条路线:一条是最快到达路线;一条是最短距离的路线。题目保证对任意的查询请求,地图上都至少存在一条可达路线。

输入格式:
输入在第一行给出两个正整数N(2 ≤ N ≤ 500)和M,分别为地图中所有标记地点的个数和连接地点的道路条数。随后M行,每行按如下格式给出一条道路的信息:

1
V1 V2 one-way length time

其中V1V2是道路的两个端点的编号(从0到N-1);如果该道路是从V1V2的单行线,则one-way为1,否则为0;length是道路的长度;time是通过该路所需要的时间。最后给出一对起点和终点的编号。

输出格式:
首先按下列格式输出最快到达的时间T和用节点编号表示的路线:

1
Time = T: 起点 => 节点1 => ... => 终点

然后在下一行按下列格式输出最短距离D和用节点编号表示的路线:

1
Distance = D: 起点 => 节点1 => ... => 终点

如果最快到达路线不唯一,则输出几条最快路线中最短的那条,题目保证这条路线是唯一的。而如果最短距离的路线不唯一,则输出途径节点数最少的那条,题目保证这条路线是唯一的。

如果这两条路线是完全一样的,则按下列格式输出:

1
Time = T; Distance = D: 起点 => 节点1 => ... => 终点

输入样例1:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
10 15
0 1 0 1 1
8 0 0 1 1
4 8 1 1 1
5 4 0 2 3
5 9 1 1 4
0 6 0 1 1
7 3 1 1 2
8 3 1 1 2
2 5 0 2 2
2 1 1 1 1
1 5 0 1 3
1 4 0 1 1
9 7 1 1 3
3 1 0 2 5
6 3 1 2 1
5 3

输出样例1:

1
2
Time = 6: 5 => 4 => 8 => 3
Distance = 3: 5 => 1 => 3

输入样例2:

1
2
3
4
5
6
7
8
9
10
11
7 9
0 4 1 1 1
1 6 1 3 1
2 6 1 1 1
2 5 1 2 2
3 0 0 1 1
3 1 1 3 1
3 2 1 2 1
4 5 0 2 2
6 5 1 2 1
3 5

输出样例2:

1
Time = 3; Distance = 4: 3 => 2 => 5

代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
#include <stdio.h>
#include <stdlib.h>

struct Edge
{
int Target;
int Length;
int Time;
struct Edge *NextEdge;
};

struct Vertex
{
struct Edge *Head;
int Known;
int Dist;
int PathDist;
int Time;
int PathTime;
int VertexNums;
};

void ReadGraph(struct Vertex *G, int n, int m)
{
int begin, target, oneWay, length, time;
struct Edge *p;
for(int i = 0; i < n; ++i)
G[i].Head = NULL;
for(int i = 0; i < m; ++i)
{
scanf("%d %d %d %d %d", &begin, &target, &oneWay, &length, &time);
p = G[begin].Head;
G[begin].Head = (struct Edge *)malloc(sizeof(struct Edge));
G[begin].Head->Target = target;
G[begin].Head->Length = length;
G[begin].Head->Time = time;
G[begin].Head->NextEdge = p;
if(!oneWay)
{
p = G[target].Head;
G[target].Head = (struct Edge *)malloc(sizeof(struct Edge));
G[target].Head->Target = begin;
G[target].Head->Length = length;
G[target].Head->Time = time;
G[target].Head->NextEdge = p;
}
}
}

void Dijkstra(struct Vertex *G, int n, int begin)
{
int v, vDist, vTime, vNums;

for(int i = 0; i < n; ++i)
{
G[i].Known = 0;
G[i].Dist = G[i].Time = G[i].PathDist = G[i].PathTime = G[i].VertexNums = -1;
}
G[begin].Dist = G[begin].Time = G[begin].VertexNums = 0;

while(1)
{
v = vTime = -1;
for(int i = 0; i < n; ++i)
if(!G[i].Known && G[i].Time != -1)
{
if(v == -1 || G[i].Time < vTime)
{
vTime = G[i].Time;
vDist = G[i].Dist;
v = i;
}
else if(G[i].Time == vTime && G[i].Dist < vDist)
{
vDist = G[i].Dist;
v = i;
}
}
if(v == -1)
break;

G[v].Known = 1;
for(struct Edge *p = G[v].Head; p; p = p->NextEdge)
{
if(!G[p->Target].Known)
{
if(G[p->Target].Time == -1 || G[v].Time + p->Time < G[p->Target].Time)
{
G[p->Target].Time = G[v].Time + p->Time;
G[p->Target].Dist = G[v].Dist + p->Length;
G[p->Target].PathTime = v;
}
else if((G[v].Time + p->Time == G[p->Target].Time) && (G[v].Dist + p->Length < G[p->Target].Dist))
{
G[p->Target].Dist = G[v].Dist + p->Length;
G[p->Target].PathTime = v;
}
}
}
}

for(int i = 0; i < n; ++i)
{
G[i].Known = 0;
G[i].Dist = -1;
}
G[begin].Dist = 0;

while(1)
{
v = vDist = -1;
for(int i = 0; i < n; ++i)
if(!G[i].Known && G[i].Dist != -1)
{
if(v == -1 || G[i].Dist < vDist)
{
vDist = G[i].Dist;
vNums = G[i].VertexNums;
v = i;
}
else if(G[i].Dist == vDist && G[i].VertexNums < vNums)
{
vNums = G[i].VertexNums;
v = i;
}
}
if(v == -1)
break;

G[v].Known = 1;
for(struct Edge *p = G[v].Head; p; p = p->NextEdge)
{
if(!G[p->Target].Known)
{
if(G[p->Target].Dist == -1 || G[v].Dist + p->Length < G[p->Target].Dist)
{
G[p->Target].Dist = G[v].Dist + p->Length;
G[p->Target].VertexNums = G[v].VertexNums + 1;
G[p->Target].PathDist = v;
}
else if((G[v].Dist + p->Length == G[p->Target].Dist) && (G[v].VertexNums + 1 < G[p->Target].VertexNums))
{
G[p->Target].VertexNums = G[v].VertexNums + 1;
G[p->Target].PathDist = v;
}
}
}
}
}

void PrintPath(struct Vertex *G, int end, int type)
{
if(type)
{
if(G[end].PathDist != -1)
{
PrintPath(G, G[end].PathDist, 1);
printf(" => %d", end);
}
}
else
{
if(G[end].PathTime != -1)
{
PrintPath(G, G[end].PathTime, 0);
printf(" => %d", end);
}
}
}

void Output(struct Vertex *G, int begin, int end)
{
int i = end;
while(i != begin)
{
if(G[i].PathDist != G[i].PathTime)
break;
i = G[i].PathDist;
}
if(i == begin)
{
printf("Time = %d; Distance = %d: %d", G[end].Time, G[end].Dist, begin);
PrintPath(G, end, 0);
}
else
{
printf("Time = %d: %d", G[end].Time, begin);
PrintPath(G, end, 0);
printf("\nDistance = %d: %d", G[end].Dist, begin);
PrintPath(G, end, 1);
}
}

int main(void)
{
int n, m, begin, end;
scanf("%d %d", &n, &m);
struct Vertex G[n];
ReadGraph(G, n, m);
scanf("%d %d", &begin, &end);
Dijkstra(G, n, begin);
Output(G, begin, end);
return 0;
}